If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-36x-4225=0
a = 2; b = -36; c = -4225;
Δ = b2-4ac
Δ = -362-4·2·(-4225)
Δ = 35096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{35096}=\sqrt{4*8774}=\sqrt{4}*\sqrt{8774}=2\sqrt{8774}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-2\sqrt{8774}}{2*2}=\frac{36-2\sqrt{8774}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+2\sqrt{8774}}{2*2}=\frac{36+2\sqrt{8774}}{4} $
| 11x-21×2=16x+30 | | C=5a-7 | | x/2+2/3=4 | | 6.35=2.5^x | | 3x+3(x-4)=5x-5 | | -5-5x=-10x+20 | | 10(2z+3)=12(z+1) | | 6u-4u=8 | | 16p-p=0 | | 3-2x/7=1 | | 90=-5f-3(-4f-9) | | 456x=1368 | | 6x+4+2×=4x+72 | | -x-19=-8x-(4+8x) | | 7-1x=25-2x | | (4x+5)=9+11x | | 10(x-2)=2(6-4)-16 | | 10x-4+7/2=5(x+1) | | 8c+12=4(3+2c) | | 11x-21/2=16x+30/2 | | 14-2x=-7x-1 | | s+1=9 | | 3/5q-1/3=-10/3 | | 2x-8-3x-18=11 | | -9-5x=-3x+1 | | d−5=5 | | y+42.5=57.3 | | -6=7v-6 | | 25-c=0 | | 2(2z+1)=26 | | -10-5x=2+7x | | 7x+-5(x+1)=0 |